生物信息学课程导引 夸克云 txt pdf umd tct 百度云 kindle 下载

生物信息学课程导引电子书下载地址
内容简介:
本书根据清华大学承办的全国生物信息学暑期学校课程,高度概括地介绍了与生物信息学研究紧密相关的11门基础课程和15个前沿专题报告。全书分12章,包括: 生物信息学引论、生物信息学中的基础统计、计算基因组学专题、生物信息学中的高级统计、计算生物学算法基础、生物信息学中的多元统计、人类疾病关联研究方法与实例、生物信息学中的数据挖掘与知识发现、生物信息学应用工具、蛋白质结构与功能基础、中医药研究的计算系统生物学方法、生物信息学与计算系统生物学前沿等。本书不仅可以作为生物信息学初学者的入门读物,还可作为生物信息学领域专业研究人员高度概括而又不失系统性的参考书籍。
书籍目录:
1 BasicsforBioinfbrmatics.
Xuegong Zhang,Xueya Zhou,and Xiaowo Wang
1.1 WhatIs l3;ioinformatics
1.2 SomeBasicBiology
1.2.1 Scale andTime.
1.2.2 Cells.
1.2.3 DNA and Chromosome
1.2.4 TheCen~a1Dogma.
1.2.5 GenesandtheGenome.一
1.2.6 Measurements Along the Central Dogma
1.2.7 DNA Sequencing一
1.2.8 Transcriptomics and DNA Microarrays
1.2.9 Proteomics and Mass Spectrometry.
1.2.10 ChIP-Chip andChIP.Seq
1.3 ExampleTopicsofBioinformatics
1.3.1 Examples of Algorithmatic Topics
1.3.2 ExamplesofStatisticalTopics.
1.3.3 Machine Learning and Pattern
RecognitionExamples
1.3.4 Basic Principles ofGenetics.
Re:fe:rences
2 Basic StatisticsforBioinformatics.
Yuanlie Lin and Rui Jiang
2.1 Introduction.
2.2 FoundationsofStatistics
2.2.1 Probabilities
2.2.2 RandomVariables
2.2.3 Multiple Random Variables
2.2.4 Distributions.
2.2.5 random sampling.
2.2.6 suf.cientstatistics
2.3 point estimation
2.3.1 method of moments.
2.3.2 maximum likelihoodestimators
2.3.3 bayes estimators
2.3.4 mean squared error.
2.4 hypothesistesting
2.4.1 likelihood ratio tests
2.4.2 errorprobabilitiesandthepowerfunction
2.4.3 p-values
2.4.4 some widely used tests
2.5 intervalestimation
2.6 analysis of variance
2.6.1 one-way analysis of variance.
2.6.2 two-wayanalysisofvariance.
2.7 regression models
2.7.1 simple linear regression.
2.7.2 logistic regression
2.8 statisticalcomputingenvironments.
2.8.1 downloadingand installation
2.8.2 storage, input, and outputof data.
2.8.3 distributions.
2.8.4 hypothesis testing
2.8.5 anova and linear model
references
3 topics in computational genomics 69 michael q. zhang and andrew d. smith
3.1 overview:genomeinformatics
3.2 finding protein-codinggenes.
3.2.1 how to identifya coding exon
3.2.2 how to identifya gene with multiple exons
3.3 identifyingpromoters.
3.4 genomic arraysand acgh/cnp analysis
3.5 introduction on computational analysis of transcriptionalgenomicsdata
3.6 modelingregulatory elements
3.6.1 word-based representations
3.6.2 thematrix-basedrepresentation
3.6.3 other representations.
3.7 predicting transcriptionfactor binding sites.
3.7.1 the multinomial model for describing sequences
3.7.2 scoring matrices and searching sequences
3.7.3 algorithmic techniques for identifying high-scoringsites
3.7.4 measuring statistical signi.cance of matches
3.8 modelingmotif enrichmentin sequences
3.8.1 motif enrichmentbased on likelihoodmodels.
3.8.2 relative enrichment between two sequence sets
3.9 phylogeneticconservationof regulatoryelements
3.9.1 three strategies for identifying conserved binding sites
3.9.2 considerationswhen using phylogeneticfootprinting
3.10 motif discovery.
3.10.1 word-basedandenumerativemethods
3.10.2 general statistical algorithms applied to motif discovery
3.10.3 expectationmaximization
3.10.4 gibbs sampling
references
4 statistical methods in bioinformatics 101 jun s. liu and bo jiang
4.1 introduction
4.2 basics of statistical modeling and bayesian inference.
4.2.1 bayesian method with examples.
4.2.2 dynamic programmingand hidden markovmodel
4.2.3 metropolis-hastingsalgorithm and gibbs sampling
4.3 gene expressionand microarrayanalysis
4.3.1 low-level processing and differential expression identi.cation
4.3.2 unsupervised learning
4.3.3 dimensionreductiontechniques
4.3.4 supervised learning
4.4 sequencealignment
4.4.1 pair-wise sequence analysis.
4.4.2 multiple sequence alignment
4.5 sequence pattern discovery
4.5.1 basic models and approaches
4.5.2 gibbsmotifsampler
4.5.3 phylogenetic footprinting method and the identi.cation of cis-regulatorymodules.
4.6 combining sequence and expression information for analyzing transcriptionregulation
4.6.1 motifdiscoveryinchip-arrayexperiment.
4.6.2 regression analysis of transcriptionregulation
4.6.3 regulatoryroleofhistonemodi.cation
4.7 protein structure and proteomics
4.7.1 protein structure prediction
4.7.2 protein chip data analysis.
references
5 algorithms in computational biology . 151 tao jiang and jianxing feng
5.1 introduction
5.2 dynamic programmingand sequence alignment
5.2.1 the paradigm of dynamic programming
5.2.2 sequence alignment
5.3 greedy algorithmsfor genome rearrangement
5.3.1 genome rearrangements
5.3.2 breakpoint graph, greedy algorithm and approximationalgorithm 159 references
6 multivariate statistical methods in bioinformatics research . 163 lingsongzhang and xihong lin
6.1 introduction
6.2 multivariate normal distribution
6.2.1 de.nition and notation
6.2.2 properties of the multivariate normal distribution
6.2.3 bivariate normal distribution
6.2.4 wishart distribution.
6.2.5 sample mean and covariance
6.3 one-sampleand two-sample multivariate hypothesis tests
6.3.1 one-sample t test for a univariate outcome
6.3.2 hotelling's t2 test for the multivariate outcome
6.3.3 properties of hotelling'st2 test.
6.3.4 paired multivariate hotelling's t2 test
6.3.5 examples
6.3.6 two-samplehotelling's t2 test
6.4 principalcomponentanalysis.
6.4.1 de.nition of principal components
6.4.2 computing principalcomponents
6.4.3 variance decomposition
6.4.4 pcawithacorrelationmatrix.
6.4.5 geometricinterpretation
6.4.6 choosing the numberof principal components
6.4.7 diabetes microarraydata.
6.5 factor analysis
6.5.1 orthogonalfactor model
6.5.2 estimating the parameters
6.5.3 an example
6.6 linear discriminant analysis
6.6.1 two-grouplinear discriminant analysis.
6.6.2 an example
6.7 classi.cation methods
6.7.1 introductionof classi.cation methods
6.7.2 k-nearestneighbormethod
6.7.3 density-basedclassi.cationdecisionrule.
6.7.4 quadraticdiscriminantanalysis.
6.7.5 logistic regression
6.7.6 supportvector machine
6.8 variableselection.
6.8.1 linear regression model
6.8.2 motivation for variable selection
6.8.3 traditionalvariableselectionmethods
6.8.4 regularization and variable selection
6.8.5 summary
references
7 association analysis for human diseases: methods and examples . 233 jurg ott and qingrunzhang
7.1 whydoweneedstatistics.
7.2 basic concepts in population and quantitative genetics.
7.3 genetic linkageanalysis
7.4 geneticcase-controlassociationanalysis.
7.4.1 basic steps in an association study
7.4.2 multiple testing corrections
7.4.3 multi-locusapproaches
7.5 discussion.
references
8 data mining and knowledge discovery methods with case examples
s. bandyopadphyayand u. maulik
8.1 introduction
8.2 different tasks in data mining
8.2.1 classi.cation
8.2.2 clustering
8.2.3 discoveringassociations.
8.2.4 issues and challengesin data mining
8.3 some commontools and techniques.
8.3.1 arti.cial neural networks
8.3.2 fuzzy sets and fuzzy logic
8.3.3 genetic algorithms
8.4 case examples
8.4.1 pixelclassi.cation
8.4.2 clustering of satellite images
8.5 discussionandconclusions
references
9 applied bioinformatics tools 271 jingchu luo
9.1 introduction
9.1.1 welcome.
9.1.2 about this web site
9.1.3 outline
9.1.4 lectures
9.1.5 exercises.
9.2 entrez
9.2.1 pubmed query
9.2.2 entrez query
9.2.3 my ncbi
9.3 expasy
9.3.1 swiss-prot query
9.3.2 explore the swiss-prot entry hba human.
9.3.3 database query with the ebi srs
9.4 sequencealignment
9.4.1 pairwise sequence alignment
9.4.2 multiple sequence alignment
9.4.3 blast
9.5 dna sequence analysis
9.5.1 gene structure analysis and prediction
9.5.2 sequencecomposition
9.5.3 secondarystructure.
9.6 protein sequence analysis
9.6.1 primary structure
9.6.2 secondarystructure.
9.6.3 transmembranehelices
9.6.4 helical wheel
9.7 motif search
9.7.1 smart search
9.7.2 memesearch.
9.7.3 hmm search
9.7.4 sequence logo
9.8 phylogeny
9.8.1 protein
9.8.2 dna
9.9 projects
9.9.1 sequence, structure, and function analysis of the bar-headed goose hemoglobin.
9.9.2 exercises.
9.10 literature
9.10.1 courses and tutorials
9.10.2 scienti.c stories
9.10.3 free journalsand books
9.11 bioinformaticsdatabases
9.11.1 list of databases
9.11.2 database query systems
9.11.3 genome databases
9.11.4 sequencedatabases.
9.11.5 proteindomain,family,andfunctiondatabases.
9.11.6 structure databases
9.12 bioinformaticstools
9.12.1 list of bioinformatics tools at international bioinformaticscenters
9.12.2 web-basedbioinformaticsplatforms
9.12.3 bioinformatics packages to be downloaded and installed locally
9.13 sequence analysis
9.13.1 dotplot.
9.13.2 pairwise sequence alignment
9.13.3 multiple sequence alignment
9.13.4 motif finding
9.13.5 gene identi.cation
9.13.6 sequence logo
9.13.7 rna secondary structure prediction
9.14 database search.
9.14.1 blast search
9.14.2 other database search
9.15 molecular modeling
9.15.1 visualizationandmodelingtools
9.15.2 protein modelingweb servers
9.16 phylogeneticanalysisandtreeconstruction.
9.16.1 list of phylogenyprograms
9.16.2 online phylogenyservers
9.16.3 phylogenyprograms
9.16.4 displayofphylogenetictrees
references
10 foundations for the study of structure and function of proteins 303 zhirongsun
10.1 introduction
10.1.1 importanceof protein.
10.1.2 amino acids, peptides, and proteins.
10.1.3 some noticeable problems
10.2 basic concept of protein structure
10.2.1 different levels of protein structures
10.2.2 acting force to sustain and stabilize the high-dimensionalstructure of protein
10.3 fundamentalof macromoleculesstructuresand functions
10.3.1 differentlevelsofproteinstructure.
10.3.2 primary structure
10.3.3 secondarystructure.
10.3.4 supersecondarystructure.
10.3.5 folds
10.3.6 summary
10.4 basis of protein structure and function prediction
10.4.1 overview
10.4.2 the signi.cance of protein structure prediction
10.4.3 the field of machine learning.
10.4.4 homological protein structure prediction method
10.4.5 abinitiopredictionmethod
reference.
11 computational systems biology approaches for deciphering traditional chinese medicine 337 shao li and le lu
11.1 introduction
11.2 disease-related network.
11.2.1 fromagenelisttopathwayandnetwork
11.2.2 construction of disease-related network.
11.2.3 biological network modularity and phenotypenetwork.
11.3 tcm zheng-related network
11.3.1 "zheng" in tcm
11.3.2 acsb-basedcasestudyfortcmzheng
11.4 network-based study for tcm "fu fang"
11.4.1 systems biology in drug discovery
11.4.2 network-based drug design
11.4.3 progresses in herbal medicine
11.4.4 tcm fu fang (herbal formula)
11.4.5 a network-based case study for tcm fu fang
references
12 advanced topics in bioinformatics and computational biology . 369 bailin hao, chunting zhang, yixue li, hao li, liping wei, minoru kanehisa, luhualai, runsheng chen, nikolaus rajewsky, michael q. zhang, jingdonghan, rui jiang, xuegong zhang, and yanda li
12.1 prokaryotephylogenymeets taxonomy
12.2 z-curve method and its applications in analyzing eukaryoticand prokaryotic genomes
12.3 insights into the coupling of duplication events and macroevolution from an age pro.le of transmembranegene families
12.4 evolution of combinatorial transcriptional circuits inthefungallineage.
12.5 can a non-synonymous single-nucleotide polymorphism (nssnp) affect protein function analysis from sequence, structure, and enzymatic assay
12.6 bioinformatics methods to integrate genomic andchemicalinformation
12.7 from structure-based to system-based drug design
12.8 progressin the study of noncodingrnas in c. elegans
12.9 identifyingmicrornas and their targets
12.10 topics in computationalepigenomics
12.11 understanding biological functions through molecular networks
12.12 identi.cationof network motifs in random networks
12.13 examples of pattern recognition applicationsin bioinformatics.
12.14 considerationsin bioinformatics
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:6分
书籍信息完全性:8分
网站更新速度:4分
使用便利性:4分
书籍清晰度:8分
书籍格式兼容性:3分
是否包含广告:8分
加载速度:5分
安全性:8分
稳定性:8分
搜索功能:5分
下载便捷性:7分
下载点评
- pdf(422+)
- 体验满分(149+)
- 超值(453+)
- 差评少(663+)
- 无多页(201+)
- 速度快(230+)
- 二星好评(446+)
- 好评(349+)
- azw3(679+)
- mobi(139+)
- 不亏(659+)
- 无盗版(633+)
下载评价
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 后***之:
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 訾***晴:
挺好的,书籍丰富
- 网友 沈***松:
挺好的,不错
- 网友 薛***玉:
就是我想要的!!!
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 养***秋:
我是新来的考古学家
- 网友 苍***如:
什么格式都有的呀。
- 网友 宫***玉:
我说完了。
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
喜欢"生物信息学课程导引"的人也看了
2023版小学生开心作文课本四4年级上册写作技巧写作思路好词好句素材积累范文大全 夸克云 txt pdf umd tct 百度云 kindle 下载
多快好省动车游 夸克云 txt pdf umd tct 百度云 kindle 下载
个人所得税法规汇编(2019年版) 夸克云 txt pdf umd tct 百度云 kindle 下载
药事管理与法规押题秘卷+精解——执业药师资格考试通关系列 夸克云 txt pdf umd tct 百度云 kindle 下载
公民参与和监督司法研究 夸克云 txt pdf umd tct 百度云 kindle 下载
市场营销学(第三版) 夸克云 txt pdf umd tct 百度云 kindle 下载
牛津中阶英汉双解词典第5版新版+古代汉语词典第2版+现代汉语词典第7版全套3本 商务印刷馆正版 初高中学生英汉双语字辞典工具书 夸克云 txt pdf umd tct 百度云 kindle 下载
生辰石和生辰玉:选购与佩戴 夸克云 txt pdf umd tct 百度云 kindle 下载
义务教育教科书音乐七年级下册(简谱)彩色 夸克云 txt pdf umd tct 百度云 kindle 下载
成人高考高升专教材2019:英语(高中起点升本、专科) 夸克云 txt pdf umd tct 百度云 kindle 下载
- 怦然心动5 夸克云 txt pdf umd tct 百度云 kindle 下载
- Streetwise Human Resources Management 夸克云 txt pdf umd tct 百度云 kindle 下载
- 建筑工程测量——中等职业教育国家规划教材 夸克云 txt pdf umd tct 百度云 kindle 下载
- 探秘三江源 夸克云 txt pdf umd tct 百度云 kindle 下载
- 【仿古线装】三国志 文白对照 线装书籍六册 三国志 陈寿著 原文译文 三国志白话文 三国志少儿版 白话三国志 相关出版:三国志 中华书局 三国志集解 三国志裴松之注 三国志通俗演义 夸克云 txt pdf umd tct 百度云 kindle 下载
- 超级大乐透终极战法 刘大军 经济管理出版社【正版保证】 夸克云 txt pdf umd tct 百度云 kindle 下载
- 教材解读七年下册道德与法治聚能闯关七年下册政治同步解读练习试卷人教版 夸克云 txt pdf umd tct 百度云 kindle 下载
- 你的形象决定你的价值 夸克云 txt pdf umd tct 百度云 kindle 下载
- 玩全攻略:新西兰玩全攻略(第2版) 夸克云 txt pdf umd tct 百度云 kindle 下载
- 公路工程机械化施工技术 人民交通出版社股份有限公司 夸克云 txt pdf umd tct 百度云 kindle 下载
书籍真实打分
故事情节:5分
人物塑造:4分
主题深度:6分
文字风格:3分
语言运用:9分
文笔流畅:7分
思想传递:3分
知识深度:3分
知识广度:8分
实用性:5分
章节划分:3分
结构布局:8分
新颖与独特:6分
情感共鸣:5分
引人入胜:7分
现实相关:8分
沉浸感:7分
事实准确性:3分
文化贡献:5分